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Photon-density wave correlation spectroscopy detects large-scale fluctuations in turbid media
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We study the fluctuations in the photon-density wave paramfdeesage intensitydc), modulation ampli-
tude, and phageaused by macroscopic fluctuations in the optical properties of turbid media. We present both
a theoretical analysis based on diffusion theory and its experimental verification on a strongly scattering
suspension containing absorbing particlés-1.6 mm effective diametgin turbulent motion. The photon-
density waves are induced by the laser diode oufps® nm), which is intensity-modulated at 110 MHz. The
dc, amplitude, and phase are acquired with an acquisition time per data point of 8 ms, which corresponds to a
frequency bandwidth of 62.5 Hz. We have found that in the presence of the absorbing particles, the dc and
phase average values and power spectra are in good agreement with our theoretical predictions. We have
verified that our instrument can extend the measured frequency band up to the kHz region, which is appropriate
for the study of fluctuations of optical parameters in biological tissi&5063-651X%98)01708-5

PACS numbes): 87.64.Ni, 42.25.Gy, 41.20.Jb, 42.62.Be

[. INTRODUCTION background medium affect the photon-density waves by ab-
sorption and refraction processes. Similarly to the DWS
In recent years the correlation spectroscopy technique wa®ethod, we relate the fluctuations in the photon-density
used to study optically thick media that exhibit a high degregVave parameters to the optical fluctuations in turbid media.
of multiple scattering1—4]. This technique, called diffusing The differences from DWS are th@ in our case the mea-
wave spectroscopyDWS), relates scattered light fluctua- Surable parameters are the average intertelity the modu-
tions to the motion of scattering particles. DWS was pro-/2tion amplitude(ac), and the phasedf) of the photon den-
posed as a tool for the study of microscopical particle motiorplly, Wave (having a frequency of-100 MH2), while in
(over a fraction of the optical wavelengtin multiply scat- . WS the only measurable value is the I'.ght intensity, &nd
tering media such as colloids and microemulsions. in our case the process under study is the large-scale (

Biological tissues typically display strong light scattering, mirgzolgggg)igpggsgcg%eggﬁéc(:ehrﬁggi’(r\1Nnr1])”e in DWS it is the

a_md therefore can be 'F“.F’O”a”‘ subjects for DWS apF.’"Ca' The purpose of our investigation is to show the potential
tions. However, in addltlor_1 to the'small—scale fluct'uatlo'ns f this approach foin vivo studies of biological systems,
due to the motion of the microscopical scatterers, blOlog'cagnd to determine the instrumental capabilities. The experi-
activity in tissues may produce large-scale spatial and temMg,ental part of our work is based on frequency-domain mea-
poral fluctuations of tissue optical properties in the nears,rements of the diffuse photon-density wave propagating in
infrared band. It was demonstrated that such fluctuations |ﬁ Liposyn suspension with f|uctuating 0ptica| properties_ The
the brain may result, for example, from hemodynani&$]  spatial and temporal fluctuations of the scattering and ab-
and neuronal activityf7]. In particular, it was found that sorption coefficients are caused by the motion of absorbing
visual stimulation induces local changes in the optical propparticles having a size of 1.0-1.6 mm. The frequency-
erties of the human brain visual arg#. It was also noted domain parameters analyzed in this study are the dc and
that near-infrared tissue spectroscopy has an advantage ovghrase of the photon-density wave. Similarly to the standard
other techniques for studying neuronal processes in that PWS approach, we use the diffusion approximation of light
potentially combines good temporal resolutitd®0—50 mg  transport in a turbid mediuf8—11] to express the statistical
with a spatial resolution of the order of 5 mi5,7]. There-  characteristics of frequency domain parametax®rage val-
fore, the analysis of large-scale fluctuations in near-infrared!€s and autocorrelation functiong terms of those of the

photon migration may provide a useful tool for the study ofParticle motion. . .
functional processes. The paper is organized as follows. In Sec. Il we describe

In this paper we present a theoretical and experimentd?U" experimenta_l apparatus and methods. In Sec. Il we d_e-
study of a system exhibiting large-scale fhm) optical pa-  "V€ the expressions for the mean values and autocorrelation
rameter fluctuations. The idea is to induce photon-densitfunctions of the frequency-domain parameters based on a
waves in a turbid medium using an intensity-modulated |igh§|mpllf|ed statistical model for the motion o_f the absorbing
source. The phase velocity and the attenuation of these ph@&rticles. In Sec. IV we compare the experimental measure-
ton density waves depend on optical properties of the mements with the theoretical predictions. The discussion of the
dium and on the modulation frequen@-11]. The localized ~eSults is presented in Sec. V.
areas having optical properties differing from those of the Il EXPERIMENTAL SETUP AND METHOD
The central part of our experimental set(ffig. 1) con-
*FAX: (217) 244-7187. sists of a containefa 1-L beaker filled with an aqueous
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FIG. 1. Schematic of the experimental setup, PMT is the photomultiplier tube. The Synthesizer 3 is used as a clock for the sampling
synchronization.

Liposyn suspensioriAbbott Laboratories in which small R928. To prevent significant light blockage by particles
black rubber particles undergo turbulent motion caused by aoming very close to the fiber ends, both fibers are placed in
magnetic-stick stirrer. The average velocity of particle mo-glass tubes such that the ends are approximately in the center
tion is controlled by adjustment of the stirrer rotation fre- of the hemisphere at the bottom of the tubes, which have a
guency. In each experiment we use particles of approxidiameter of 1.3 cm. The tubes are filled with the same me-
mately equal size, either 1 mm or 1.6 mm effective diameterdium as the entire container. The distance between the source
The 750 nm light emitted by the laser diodee2 mW  and detector fibers ranges from 1.4 to 2.4 cm, which corre-
average power, Sharp LTO30MDs guided to the medium sponds to a minimum distance between the tube walls rang-
through a multimode silica optical fibésource fiberhaving  ing from 0.1 to 1.1 cm.
a core diameter of 60@m and a numerical aperture of 0.39  The laser current and the PMT voltage are modulated by
(Thorlabs, FT-600-EMT. A glass fiber bundlédetector fi- the synchronized synthesizers at 110 and 110.005 MHz re-
ber, internal diameter: 3.2 mm, numerical aperture: 0.56spectively. The signal from the PMT at the difference fre-
Oriel, Model No. 7752y collects the scattered light and con- quency (also called the cross-correlation frequency ap-
ducts it to the photomultiplier tub€PMT, Hamamatsu plied to the input of an interface caftSS A2D, ISS Inc.,
Champaign, Il for an IBM-PC computer, where the data
processing is performed to obtain dc, ac, @nd12]. Figure

Stirrer off Stirrer on
<+~ 2 shows a sample of the dc and phase temporal evolution
0 g obtained with an acquisition time of 8 ms. The left part of the
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FIG. 2. Time traces of the dc and phase signals before and after FIG. 3. Phase and dc normalized autocorrelation functions ob-
the stirrer is turned on. The average particle radius is 0.79 mm; th&ined from the experimental power spectra using the discrete in-
particle concentration is 0.3 ¢m; the magnet rotation frequency is verse Fourier transform. Experimental conditions are the same as in
about 2.5 Hz; the acquisition time is 8 ms per data point. Fig. 2, and the total time per sweep is 8 sec.
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TABLE |. Results of the least? fit of the average phase and dc change in three different experiments.
Numbers in parentheses are the standard deviation errors in the last digits.

Data
set Average change in Parameter Expected Fitted x? Fig. No.
a (mm) 0.791) 0.682)
dc ny (cm™3) 0.3 0.294)
for different concentrations n, (cm™3) 0.4 0.425) 1.1
of large particles ng (cm™3) 0.5 0.495)
) Ny (cm™3) 0.6 0.615)
a (mm) 0.791) 0.661)
phase ny (cm™3) 0.3 0.3%5)
for different concentrations n, (cm™3) 0.4 0.4@5) 1.4 5a)
of large particles ns (cm™3) 0.5 0.475)
Ny (cm™3) 0.6 0.545)
a (mm) 0.501) 0.391)
n, (cm™3) 0.4 0.31)
dc n, (cm™3) 0.8 0.81)
for different concentrations  ng (cm™3) 1.2 1.31) 1.8 5b)
of small particles N, (cm™3) 1.6 1.70)
Ns (cm™3) 2.0 2.q1)
X Ne (cm™3) 2.4 2.41)
a (mm) 0.501) 0.351)
ny (cm™3) 0.4 0.22)
phase n, (cm™3) 0.8 0.81)
for different concentrations N (cm™3) 1.2 1.21) 1.5
of small particles N, (cm™3) 1.6 1.70)
N (cm™3) 2.0 2.q1)
Ne (cm™3) 2.4 2.41)
a (mm) 0.501) 0.5011)
phase a1 (cm™Y 0.0442)  0.0412)
3 for differentu, values Mao (cm™ 0.05712) 0.0502) 1.7 5c)
(small particley tas  (cm™ 0.0732)  0.0591)

Uaa  (cmY) 00882  0.0773)

plot corresponds to the situation when the mixer is off, sowith those obtained at different acquisition times from 4 to
that the particles rest on the bottom of the beaker, and th&6 ms per point. An acquisition time of @6) ms corre-
right part (aftert~2.5 9 corresponds to the fluctuation re- sponds to a frequency bandwidth of 12%51.25 Hz in the
gime, when the stirrer is on. One can see that when the mixgrower spectrum. The total time of a sweep is restricted only
is on, both the phase and the dc exhibit fluctuations oveby the capacity of the computer memory. In our measure-
some average value, which is different from that when thements it was 8.2 s, which corresponds to a frequency reso-
mixer is off. The time series of the dc and phase values were
further processed to obtain the time-averaged values of the
frequency domain parameters and their fluctuation power
spectra. For the power spectrum analysis two characteristics
of the data acquisition are important, namely the sampling
rate (which is inverse of the acquisition timand the total
length of the time sweep. The upper limit of the sampling
rate is determined by the cross-correlation frequeidckHz

for our instrumentand is the higher the larger the frequency
is. This is because the frequency-domain parameter evalua- I~ Glass Tubes
tion employs the fast Fourier transform of a cross-correlation " Beaker wall
waveform, in general obtained by averaging over a number

of acquired waveformgl2]. For the measurements reported  FIG. 4. View of the beaker setup from above. Coordinate axes
in this work, the acquisition time per point was 8 ms, whichandz show only the spatial directions and are not attached to any
corresponds to 40 periods of the cross-correlation wave. Allixed Cartesian coordinate system. The vertigahxis is perpen-
results were verified to be in good quantitative agreemendicular to the plane of the figure.

. Particle

1.3 cm

Stirret rotation

>
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lution of 0.125 Hz. Figure 3 shows typical dc and phaseconstants defined by the boundary conditiph§], v is the
normalized autocorrelation functiongutocorrelation func- speed of light in the medium, ar{ w) is the source power
tions normalized to unity at zero timebtained from the at angular frequencw (for the dc,w=0). In Eq.(2), k,, is
experimentally acquired power spectra by means of the inthe diffusion wave number,

verse discrete Fourier transform.

Our technique also allows us to obtain the absorption and 3 w2 12
reduced scattering coefficients of the medium from the plots K,=\ /Eﬂ«a#é —1+\/1+ 5—;
of the dc and phase vs source-detector distance in the ab- C ua
sence of particles. The details on the corresponding tech- 57\ 12
nigue may be found if13,14. In all the measurements re- vil1e /14 3
ported here the reduced scattering coefficigrit of the T '

Lyposin suspension was ®.1 cm *. The absorption co-
efficient u, was always 0.0420.001 cm?, apart from the where u, and u. are, respectively, the absorption and the

experiment where we varied, (data set 3 in Table)! reduced scattering coefficients of the medium.
The constant®\,; in Eq. (2) depend on the size of the
. THEORY object and on its scattering and absorbing propeftigs.

Using the expressions fak,, derived in[15] one can check

that for perfectly absorbing objects having a diameter
Figure 4 shows a close up view of the beaker setup angmaller than about 5 mm, the magnitudesAgf monotoni-

explains the geometry-related notations used below. cally decrease by several orders of magnitude for each suc-
We describe the signal fluctuations due to the particlecessivel. Keeping only the zero-order term we have

motion using the diffusion approximation to the theory of

A. The model

light propagation in turbid medig8—11]. In this approxima- 3ul ekuEt
tion the light energy density as a function of time and space Su(r,w)=S(w)A,— 7 . (4)
coordinategthe so-called “photon density’obeys the gen- v 4méy

eral diffusion equation and the particular boundary condi-

tions specified by the light absorption and scattering at thé&vhere
boundaries. We assume that the rubber particles contribute to

the signal change by absorbing photons from all possible _
paths passing through a given particle. Since the particles 0= K, 2k, a+i(2+3ula)

used in the experiment are small, one can neglect the contri- (5)
butions from those photon paths that include more than one

particle. In this approximation the solution to the diffusion |n Eq. (5), a is the radius of the spherical object. Note that if

e k2 2k a cogk,a)— (2+3ula)sin(k,a)

equation may be written as one takes typical values for near-infrargg and u., in bio-
N, logical tissues(e.g., ua=0.1 cmt, u.=8 cm 1), where
G=U+> 8u;, (1) k,~1cm !, and sincea<l cm, we can set cok(a)=1
=1 and sink,a) =k, a, so we obtain the approximation
whereU = U 4.+ U, is the sum of dc and ac photon densities 3ula?
i i i A~————7—7. 6
created by the light source in the absence of partiches, © 2+ 3ap] (6)

=0Ugrj)+ duydrj,w) is the sum of dc and ac contribu-

tions from the particle having coordinatg, andN, is the . . .
total number of particles in the beaker. The simplest analyti—ThIS 'S unlike the case of a nonperfect absorber, for which

_ . . . 3
cal form of éu; is that for a spherical particle at position the zero-order term in Eq2) is proportional tea®. Note that

for which it may be expressed as the sum of the dc and aﬁe modulation frequency does not enter EqB), so that in
terms both having the form this approximation the coefficienss, for the dc and ac parts

of the signal are equal.

T
5 SE Awlhfl)(kwg)hfl) B. Average values of dc and phase fluctuations
=0

, If one considers a homogeneous spatial distribution of
X (k)Y 06,0067, (2)  absorbing particles, and by assuming that all particles are
spheres of the same radiasthe ensemble average of the dc
where § and » are the distances from the particle to the fluctuation (6U4¢)=(Z;6u(r;),0) is given by the volume
source and the detector, respectivedge Fig. 4 Note that integral of the right-hand side of E¢4) at w=0, multiplied
as a result of the cylindrical symmetry with respect to the by the particle concentration. Taking into account that in
axis passing through the source and dete@dy. 4), £ and  terms of the variables and » the volume element is
n are the only independent coordinates entering &)  (2w£7/R)dédy (whereR is the source-detector separadion
since the angl® may be expressed in their terms. In E2), and that the source and the detector are protected from the
h,(l)(x) are the spherical Hankel functions of the first kind, particles by tubes of radius, one obtains for the average dc
Yim(6,¢) are spherical harmonics, are the numerical change the expression

3
Su(r,w)=9S(w)
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elko(£+7—R)

(0Uqe)=S(0) 4mén

’ _ _ a—2aA
3M5A2%1a(R 2A)J;1 € R <5¢)~Rnlm(AwJ
a

(@)

wherea = \/3u,us, Or using the approximations in E¢p),

o)

=2mn Im

A, _
k—z[—1+e2'kA+ik(R—2A)]) ,

) - _ 14
(3pd)?a? ne R @(R—2A)+1—e 294 a4
2+3ap; 2vR a? ' from which one can see th&b®) is a linear function of the
(8) source-detector distand® Using the approximatiol6) for
A, , Eq.(14) becomes
For comparison with the experimental measurements it is

(0Ug4e~—9(0)

more convenient to use the relative average dc fluctuation 6mnula? [ —1+e¥kAtik(R—24A)
(8UgoUge. Assuming an infinite medium, for which 4 (8D)~— i s | i .
=5(0)(3uie” “Ri4muR), one gets aus k a5
(8Ugo —6mnuia® a(R—24)+1—e 204
Ugc - 2+3ap; a? N C) C. Autocorrelation functions

If one assumes a homogeneous patrticle distribution in the
Note that the right-hand side of E) is a linear function of medium and the independence of the motion of each particle
R. from the others, the dc autocorrelation functiég(r) may
To estimate the average phase fluctuation we write the alee given by the expressidi6]
part of the signal in the form

KdC(T):nf J‘ 5U(r1,0)5U(r2,0)Wf(rlﬁrz)dsrldgrz,

) , (10 (16)

eika—iwt eikw(§j+77j—R)
S(w) —

——F1-A,R
4mvR EJ: & m;
where the factored term is the ac signal with no particles. I,E/vhere du(r,0) s the single-particle contribution to the dc

follows from Eg.(10) that the tangent of the phase changeChange given by EqA), ry andr, are the coo_rdlnates of a
50 due to the particles is particle at time moments and t+ 7, respectively,W (r,

—T5) is the probability density for the particle displacement
elk(&+ 7 —R) from pointr, at timet to pointr, at timet+ 7, andn is the
—) concentration of particles. The particular form & _(r,

—T,) is determined by the nature of the particle motion and

R Im(sz

] & mj

tan(6d)= (19 is not known for the given environment. We assume that the

K& T7—R)\ -
1-R Re( sz T) vector of a particle displacemeni—r,; may be represented
. i as a sum of the regular periodical componeiftr) describ-
jng the rotation in the horizontal plane around the beaker
vertical axis, and a random componefit For this model the
probability density may be written 447]

Note that for particles less than a few millimeters in diamete
the absolute value dk, is much smaller theR. Let us also
take into account the fact that the valuesépfand ; in Eq.
(10) are of the order oR/2 and greater than 0.65 cfthe test _ap o 2 .
tube radiug For this reason the second term in the denomi- \y (. )_ (4m7) exd — "7 yH* (@)
nator of Eq.(11) may be neglected. This is valid for particles "~ * "~ *~ DD, D, 4Dyt 4Dyt 4D,7)’
of small enough size if their concentration is not too large. (17
Since in our measurements the instantaneous phase deviation
values from the value in the absence of particles lie within aand the integration ovar, in Eq. (16) reduces to that over
few degreegsee Fig. 2, one can also replace ta®P) by  r”. Since the detector sensitivity to the presence of a particle
8d, so that finally the phase fluctuation may be expressed &s restricted to distances of aboat *~1 cm, we assume
the sum over the single-particle contributiofé(r;) as for simplicity thatr’'(7) evolves along th& axis from— to

+ o at each rotation periogee Fig. 3. Using these assump-

- . ' tions and the approximation of the functidu(r,0) by the
o E i94(1y), (12) series of Laguerre functior(see the Appendjxone can get
the following expression for the dc normalized autocorrela-
where tion function[16]:
elko(&+ 7~ R) B
5¢(r)=R Im(AwT> (13) o LA 201+ 07D o 28
i R (r)= Kad?) _ VD7
This approximation leads to the expression for the average Kad0) V(1+07D,)(1+07D,)

phase fluctuation: (18
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whered(7) is the x component of the vectar'(7), which  may be estimated using the general expression of the same

describes the regular periodic motion amd*? is the char-  form as Eq.(16) for the dc:

acteristic decay length of the functia®u(r,0) along thex

andy directions in the first order of the Laguerre function  Kpnasé T)ZHJ j Sp(r1) 8p(r) W, (r1—r2)dr,d%r 5,

approximation[see Eq.(A2)], and erf(s)=(2/\/;)f3e*‘2dt (19

IS th_e error functhn. _ .. where W, was defined above. In the Appendix, using the
Since Eq(12) gives the instantaneous phase fluctuation in,st_order approximation of functiom(r) by the series of

terms of the sum over single-particle contributifis|. (13)]  associated Laguerre functions, we show that the normalized
as is done for the dc, the correlation function for the phaseautocorrelation function for the phase has the form

e

+44D7+ 37 12d°D; + 15203+ 2d*D +32d°D, D + 432D D + 4d’D; + 184D,D7]+ g4 44Dy,

Ronasé 7) = e [d(D?BIAL+BTD) o f

) [32+ B7(128D,+64D,) + B277 d*+ 12d%D, + 204D 2+ 4dD,,+264D,D,

+2802DD, +328D7D + d*DJ+ 2002D,DJ + 300D 2D ]+ 857 96D ;D + 16d°DZDJ + 224D ;D]
+648°7°DD31/[32(1+ B7D,) %A1+ B7D,)>?], (20)

where ™12 is the decay length for the functiafp(r) along is slower than those introduced by the exponential and de-
thex andy directions[see Eq.(A5)]. nominator terms because of the probe weak sensitivity to
To discuss Eqgs(18) and (20) let us first note that both particle displacement in thedirection. One should note that
formulas have the exponential factors identical apart fronEds.(18) and(20) essentially represent the normalized auto-
the replacement g8 by o in Eq. (20). These factors give the correlation functions of the dc and phase responses for a
damped-pulse forntsee Fig. 3to the curves of autocorrela- Single-particle random perturbation. Their proportionality to
tion functions, while the terms in the denominators provideth® dc and phase correlation functions, where the coefficients
the correlation decay for large. If one setsd=0 in Egs. linearly depend on the_partlcle concentration, is the conse-
(18) and (20), the corresponding curves decay monotoni-duence of the assumption of the statistical independence of

cally. The origin of the peaks in the autocorrelation functionthe n|10t'|0n ff eqch phartlﬁle fro? the é)thers. F_or tTe phase
is the periodic component of the particle motion, while thecorrelztatﬁﬂ unct|on. t ?. meard (etpenbtepce m))rlfs asg a
decay is due to the random diffusion of particles. Note that rcﬁ)u of the approximation made to obtain ELp) from Eg.
enters the denominator of the exponent argument as a mu(l- '
tiple of D,, so that this diffusion constant is responsible for

the broadening of successive correlation peaks. At small IV. EXPERIMENTAL RESULTS
[<(BDyy) *.(dDy,) '] the evolution of both the dc and
phase curves is mostly affected by the exponential terms.
Particularly, if one assumes a linear dependencd of 7, Equations(9) and (15) derived in Sec. Ill may be com-
these terms provide a Gaussian decay with the characteristigred with the frequency domain parameter time-averaged
decay constants proportional éoandg for the dc and phase data obtained using the instrumentation described in Sec. II.
autocorrelation functions, respectively. Typical valuessof For a discrete set d¥l source-detector distanc& we ob-

that provide the best approximation £ su?(,0)dy (see tained three data sets for the time-averaged dc and phase
the Appendix with only the zero order term in EqA2) are  Vvaluesy; ;. These data sets correspond to measurements
about 3.6 cm2, while the optimum values of are some- Made at variousgi) concentrations); of large particles with
what less(about 3.3 cm?). In other words, when a particle an effective radiusa=0.79 mm; (i) concentrationsn; of
recedes from the probe, the probe feels the particle in thémall particles with an effective radius=0.50 mm; (iii )
phase longer than in the dc. This is why, according to Egsabsorption coefficientg,; for the constant concentratian

(18) and (20), the autocorrelation function for the phase =0.6 cmi ® of small particles. The effective radius of the
decays slower than that for the dc. For largeparticles was estimated from the measurement of the volume
T[>(BDx,y)71:(UDx,y)7l] one can neglect the unity in the occupied by_ a known large numbg&r800 of particles. The
denominators of the right-hand sides of both E4®) and  smaller particles were produced from the larger ones by cut-
(20). Also, all terms of order less than six in the numeratorting each into four pieces, so that the average radius ratio
polynomial in Eq.(20) can be neglected. Consequently, equals 45 To vary the absorption coefficient of the medium

at large 7 both curves decay asr !. The factor We employed various concentrations of black India ink. The
erf R—2A//D,7] in Egs.(18) and(20) describes the corre- data were fitted by curve¥, q (R) given by Eq.(9) for the
lation decay due to the diffusion along thexis. This decay dc or Eq.(15) for the phase. The parameteas imposed to

A. Fit of average values



2294 V. TORONOQOV, M. FILIACI, S. FANTINI, AND E. GRATTON PRE 58
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Small Particle FIG. 6. Phase power spectra acquired at three successively in-
o Concentration: creasing magnet rotation frequencies. The arrows indicate the fre-
g 020 b} A foos e quencies corresponding to the peaks. The experimental conditions
éoﬁ %y/ ° 08 em? are the same as in Fig. 2, apart from the effective particle radius
S Tt a e (0.50 mn).
@) o % . cm
0 0® B -~ 3 ness of the fit. From Figs.(8-5(c) and Table | one can see
oo - that Egs.(9) and(15) fit the data with parameters that are in
T oos e 24 e good agreement with the expected ones. A small negative
O ‘ ‘ (= 0042 om curvature exhibited by the sets of data points may be related
4 18 18 20 22 24 ) B to the nonhomogeneity of the particle spatial distribution,
Source—Detector Distance Mooz 98 em which is larger near the beaker wall and smaller near its
center. Since in our measurements the fiber nearest to the
- Absorption cosfficient: wall was fixed and the source-detector distance was changed
b by moving the other fiber towards the beaker center, the
g bocossen effective concentration of the particles was decreasing with
» © 0087 e distance. Note that while the fitted radii in the first two data
£ s 0073 cm sets are consistently smaller than the expected ones, the ratio
E . 0088 am of the large to small fitted radii is 1.7, close to the expected
8 value of 43~1.6.
é:‘ Small Particle Concentration: 0.6 om™
o 14 16 18 20 22 24 B. Fit of power spectra
Source—detector distance (em) Figure 6 shows the experimental power spectra of the

FIG. 5. (@) Average values of the phase change for Olifferentphase fluctuations obtained for three different mixing magnet
concentrations of large particlé®.79 mm effective radiys (b) rotation rates. One can see that each curve has a maximum

average relative dc change for different concentrations of small palpeak at a frequency that increases with Fhe magnet rotation
ticles (0.50 mm effective radius (c) average phase change for dif- 'at€. There are also peaks at the harmonics of these frequen-
ferent absorption coefficients of the turbid medium. The points rep€i€S. This confirms that the particle motion may be consid-

resent the experimental data as a function of source-detectéied as the superposition of the periodic and random compo-
distance, while the lines are the best theoretical fits. nents assumed for the derivation of E¢8) and (20). The

fact that the maximum peak frequency for each curve in Fig.
have the same value for a given data set and corresponds?o'S more than two times smaller than the corresponding
the particle effective radius\ valuesqy, . .. gy of the pa-  "egquéncy of the magnet rotation Is explained _by the spiral-
rameterg (whereN is the number of curves in each data)set like character of particle motion, such that particles return to
vary for different curves within each data set and corresponH:e tprrmozel after traveling along a number of vertically
to n; for the first and second data sets angtg for the third stretched 1oops.

one. The fitting algorithm is based on the minimization of the Anothe_r assumptlon_used to o_bt_am t_he dc and phase au-
¥2 function[18] tocorrelation functions is the statistical independence of the

particle motion. To check its validity, power spectra were

x2(a,q1, ... Oy =(NM—=N-1)"1 obtained for different concentrations of particles. From Fig.
7(a) one can see that most of the spectrum increases homo-

NM [Yi,j_Ya,qj(Ri)]z geneously with concentration and approximately doubles
ijl 24 Z (21)  when the concentration doubles, in agreement with the as-

ij sumption made. To check this point quantitatively we plot
the integral of the dc power spectrum as a function of par-
(wherev; ; are the standard deviation errors in the measureticle concentration{Fig. 7(b)]. Figure 7b) shows that the
mentsy; ;) with respect to the values of the parametersintegrated dc power spectrum increases somewhat faster than
a,q;, . ..,gy. The parameters providing the best fit are re-linearly, and the divergence from a straight line becomes
ported in Table I, while Figs. ®)-5(c) illustrate the good- more significant at large concentratiofi®te that the inset,
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FIG. 7. (a) dc power spectra for different particle concentra- g 10 L 20

tions. From bottom to top, the curves correspond to particle con- Frequency (Hz)
i 3
centrations of 0.008, 0.016, 0.032, 0.064, Q.128, and 0.2_56 cm FIG. 8. The dc(a) and phaseb) power spectra. The points
(b) Integrated dc power spectrum vs particle concentration. The ! . X i
inset shows an enlaraed view of the boxed part of the curve in théepresent the experimental data, while the lines are the best fits
- 9 P provided by Eq(18) [panel(a)] and Eq.(20) [panel(b)]. The data

main plot. . . . - NG )

are obtained in the following experimental conditions: particle ef-
fective radius and concentration are, respectively, 0.5 mm and 0.3
corresponding to very small particle concentrations, showsm™3, magnet rotation frequency is 4 Hz. In the theoretical curves
an almost perfect linearity The curve deviation from the the effective particle rotation frequency is 1.5 Hz. Although the
linearity may be related to the power spectrum peak at thé'e.qu.enf:y.band investigated extends up.to 62.5.Hz, the frequency
average particle rotation frequency, which increases faste’:}').(ls is limited to 20 Hz because the particle mOFIOI’l does not con-
than the rest of the spectrum and becomes more pronouncégpute to the power spectrum at larger frequencies.

at large concentratiori§ig. 7(a)]. One can attribute this fast

growth of the resonant peak to the correlations among papassing through the middle of the line joining the source and
ticles, which are not included in the theoretical model. detector fibergFig. 4), and Q is the rotation rate. Such a
The real picture of particle motion may be more compli- chojce ofd(r) provides a kind of motion in which the par-
cated than the one assumed in our theoretical model, and ifg|e periodically recedes to infinity and returns back to the
detailed investigation is beyond the goals of the present pgsrope. To obtain the theoretical curves shown by the con-
per. However, some of the correlation function characterisyinyous lines in Fig. 8, all the parameters entering Ed8)
tics predicted by the model are observed experimentally. Figand (20) (apart from the diffusion constantare set equal to
ure 3 shows the normalized autocorrelation functions for thgneijr experimental values. The diffusion constant values pro-
dc and phase obtained from the power spectra by means Qfding the best fit ar®,=D,=D,=6 cn?/s. One can see

the inverse discrete Fourier transform. The behavior of thesgat the theoretical curves are in good quantitative agreement
curves is in qualitative agreement with the theoretical resultsyith the experimental data.

(i) both curves exhibit damped pulsations with a period com-
parable to that of the mixer rotation rate, afid the dc
autocorrelation decays faster than that of the phase. To verify
experimentally Eqs(18) and(20), we fitted the experimental Data acquired with a sampling rate of 125 Hz show that
power spectra to the theoretical curves by adjusting the valeur instrument is appropriate to investigate optical fluctua-
ues of the diffusion constan®,,D,,D,. Figure 8 shows tions in the frequency band of 0-62.5 Hgrocesses on a
fits for the dc and phase spectra, where the theoretical curveine scale of 16 msec or slowernd over a spatial size as
are obtained from the discrete Fourier transform of the autosmall as 1 mm. Referen¢&] has presented measurements of
correlation functions given by Egél8) and(20). The func-  temporal changes in the human occipital cortex optical pa-
tion d(7) in Egs.(18) and(20), representing the regular pe- rameters during visual stimulation. Since the characteristic
riodic component of particle motion, is simulated by thetime of the observed process is about 100 ms, the authors
function L tan(w7Q), whereL=4 cm is the radius of a assign their observation to the neuronal activity. As reported
horizontal circle centered at the beaker vertical axis andy Grattonet al.[7], optical signals corresponding to specific

V. DISCUSSION AND CONCLUSION
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brain functions are very weak, having amplitude comparablef a periodic component in the procegsovided in tissues

to that of the underlying noise due to biological activity andby the heart beat

the instrument noise. The instrument noise is statistically in- In conclusion, using the diffusion approximation for light
dependent of the specific process under study and subtractiignsport in turbid media we have obtained analytical expres-
its spectrum from the power spectrum of the process cafiions for the mean changes in the dc and phase due to the
filter it out. Following this approach, we performed a mea-motion of absorbing particles. Our measurements show that
surement to obtain the dc and phase fluctuation power spe&)€Se expressions are in good agreement with the experimen-
tra using only one cross-correlation period per data pointfél data. In our case, the measurement of macroscopic fluc-
The minimum period corresponded to a time resolution ofuation of optical parameters in turbid media provides infor-

0.2 ms and a maximum sampling frequency of 5 kHz. In ourMation about the underlying physical processes and their

test we collected data for the same total amount of time, bufMe characteristics.

using different sampling rates. These power spectra and 'N€ results and methods presented in this work may be
those obtained at a sampling interval of 8 ms essentiall;}‘sed to develop a high temporal resolution technique for the

coincide in the frequency band 0—62.5 Hz. This test demonstudy_of functional processes 'rglated to blood flow and oxy-
strates that the maximum effective sampling rate of our in-9&nation, and to neuronal activity.
strument extends up to 5 kHz.

Theoretical calculations confirmed by measurements re- ACKNOWLEDGMENT
veal that both phase and dc power spectra are proportional to This work was supported by NIH Grant Nos. RR03155
the concentration of particles and to the fourth power of their, nd CA57032
effective radius. For particles having an effective diameter OP '
1 mm at a concentration of 0.3 ¢riwe measured a signal-
to-noise ratioSNR) of 22 dB for the phase power spectrum
at the maximum peak frequency. Using the above theoretical To perform the integration in Eq16) we replace the
result to scale this value, we found that the phase SNR b&unction 5u(r,0) by a suitable approximation_ Due to the
comes 0 dB for particles with an effective diameter of 0.6axial symmetry, this function depends On|y on two spatia|
mm at a concentration of 0.3 ¢m. Alternatively, it de- coordinates, which may be chosen as the distanitem the
creases to 0 dB for particles with an effective diameter of Iparticle to the source-detector liisee Fig. 4 and the lon-
mm and at a concentration of 0.03 ¢ The dc SNR's are  gjtudinal coordinate along this line. Using Eq4) one can
typically much higher. For the same conditions at which thecheck that the change iu(r,0)= su(p,z,0) with z is only
phase power spectrum SNR is 22 dB, the dc maximum peakignificant in the vicinity of the source or the detector. Since

SNR is 41 dB. These results give an indication of what is thqhe source and detector are confined by the tubesy we let
smallest measurable size of particles at a given concentratiod R/2, so that Eq(4) becomes

(and in our experimental conditions

APPENDIX

Our measurements show that the phase and the dc of A, exf —2a\(RI2)%+ p?]
photon-density waves propagating through a turbid medium ou(p,RI2,0)~ yp. (RI2%1 7 . (A1)
p

with fluctuating optical properties have quantitatively differ-
ent statistical properties. Namely, the phase correlation funcs . . .
tion decays slower than that of the dc. This effect reflects thggﬁege(;kstzp lljsertrz agfrr?glrmglf I(E?d/l)) [%]Fhe weighted
well-established property of the dc and phase signals to ex- 9 poly n '
plore different spatial regions. The dc signal is very sensitive A [N
to the region close to the source and detector fibers. Instead _“( 2 hnLn(azp))eX[x—ot///Z), (A2)
the phase signal responds more uniformly to the region be- 4w\ n=1
tween the source and the detector. )

The statistical model we have used to describe the particl¥nere#=p” and
motion corresponds to the so-called model of homogeneous
stationary turbulencEL7]. We realize that this model is very h :Ufwexp:—Za V(RI2)"+ §— o yl?] L (cy)dy
rough and does not include many features of the real particle " 0 (RI2)%+ ¢ n '
motion. However, the goal of the present work is not the (A3)
investigation of the properties of the particle motion in the
flow, but the demonstration of the method to study fluctua-The substitution of Eq(A1) with the seriegA2) is advanta-
tions of the optical parameters in turbid media. The values offeous to estimate the correlation function for the following
the particle diffusion constantéabout 6 cr/s) obtained reasons. First, one can vary the parametewhich specifies
from the experimental power spectra are consistent with théhe “width” of the Laguerre functions, such that the first
observed average speed of particlgbout 5-10 cmjs  term in Eq.(A2) agrees with Eq(Al) to within 10%. Sec-
which confirms the validity of the method. ond, in the limit of larger the double integral in Eq16)

We note that although the system we have studied is fafurns into the square of an integral of the form
from being a perfect model of any real tissue, some of its/ 5 Su(#,0)d. The approximation of a function by the series
features are similar to those observed in tisfa@sFor in-  of weighted orthogonal polynomials provides the minimiza-
stance, the occurrence of areas having optical properties difion of the error in the estimation of the integral of the func-
fering from those of the background medium, the temporation with respect to all possible polynomial approximations
fluctuations in the local optical properties, and the presencef the same order. Therefore, the seri#é®) gives a good
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a_p_proximation for the correlation function at largeln aq-_ Im(A expl 2ik[ V(R2)2+ y—R/2]})
dition, the value of the parameter may be chosen to mini- Sp(p)~R 5 .
mize not the error in the function approximation itself, but (RI2)“+y

the error in the estimation of; su?(y,0)dy, which is the (A4)

principal term entering the expression for the dc autocorre-

lation function atr=0. In this way the parameter naturally The next step for calculating the integral in Ea9) is the

becomes dependent on the physical_ characteristics of the syS;pstitution of the right-hand side of E@\4) by a weighted

tem, such as the source-detector distaRcend t,he absorp-  series of orthogonal polynomials. The only difference from

tion and reduced scattering coefficieptg and u. . the dc case is that a quicker convergence to the approximated
Keeping a large enough number of terms in E&R) one  fynction may be obtained using the set of associated La-

may calculate th_e correlation functlon_to any desw_ed accUgyuerre polynomials of the first orderl (8y), whereg is

racy. However, since we have no detailed information aboufye characteristic width of the function in the right-hand side

the statistics of the particle motion, we can analyze the Situyf Eq. (A4). This function is approximated by the series
ation only qualitatively. For this reason we keep only the first

term in the seriegA2) to derive the expression for the dc
autocorrelation function given by E¢L8). 1
Like the functionsu(r,0), the single-particle contribution R( PINE n(IB'//)) (By)exp(— Bil2), (A5)
to the phase fluctuatiod¢(r) given by Eq.(13) depends
slowly on the longitudinal coordinateand may be approxi-
mated as where the coefficients are

gn=BT(n+1)/[T(1+n+1)]? f:lm(A"’eXp[ZI(kFE,Z(:fL TR

exp(— BYl2)LY(By)dy, (A6)

and B is chosen to minimize the error in the calculation of the integrabéf(x). Keeping only the first term in the series
(A5), one obtains the autocorrelation function for the phase given in(Zmy).
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