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Photon-density wave correlation spectroscopy detects large-scale fluctuations in turbid media

V. Toronov,* M. Filiaci, S. Fantini, and E. Gratton
Laboratory for Fluorescence Dynamics, Department of Physics, University of Illinois at Urbana–Champaign,

1110 West Green Street, Urbana, Illinois 61801-3080
~Received 10 December 1997!

We study the fluctuations in the photon-density wave parameters@average intensity~dc!, modulation ampli-
tude, and phase# caused by macroscopic fluctuations in the optical properties of turbid media. We present both
a theoretical analysis based on diffusion theory and its experimental verification on a strongly scattering
suspension containing absorbing particles~1–1.6 mm effective diameter! in turbulent motion. The photon-
density waves are induced by the laser diode output~750 nm!, which is intensity-modulated at 110 MHz. The
dc, amplitude, and phase are acquired with an acquisition time per data point of 8 ms, which corresponds to a
frequency bandwidth of 62.5 Hz. We have found that in the presence of the absorbing particles, the dc and
phase average values and power spectra are in good agreement with our theoretical predictions. We have
verified that our instrument can extend the measured frequency band up to the kHz region, which is appropriate
for the study of fluctuations of optical parameters in biological tissues.@S1063-651X~98!01708-5#

PACS number~s!: 87.64.Ni, 42.25.Gy, 41.20.Jb, 42.62.Be
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I. INTRODUCTION

In recent years the correlation spectroscopy technique
used to study optically thick media that exhibit a high deg
of multiple scattering@1–4#. This technique, called diffusing
wave spectroscopy~DWS!, relates scattered light fluctua
tions to the motion of scattering particles. DWS was p
posed as a tool for the study of microscopical particle mot
~over a fraction of the optical wavelength! in multiply scat-
tering media such as colloids and microemulsions.

Biological tissues typically display strong light scatterin
and therefore can be important subjects for DWS appl
tions. However, in addition to the small-scale fluctuatio
due to the motion of the microscopical scatterers, biolog
activity in tissues may produce large-scale spatial and t
poral fluctuations of tissue optical properties in the ne
infrared band. It was demonstrated that such fluctuation
the brain may result, for example, from hemodynamics@5,6#
and neuronal activity@7#. In particular, it was found tha
visual stimulation induces local changes in the optical pr
erties of the human brain visual area@7#. It was also noted
that near-infrared tissue spectroscopy has an advantage
other techniques for studying neuronal processes in th
potentially combines good temporal resolution~10–50 ms!
with a spatial resolution of the order of 5 mm@5,7#. There-
fore, the analysis of large-scale fluctuations in near-infra
photon migration may provide a useful tool for the study
functional processes.

In this paper we present a theoretical and experime
study of a system exhibiting large-scale (;mm) optical pa-
rameter fluctuations. The idea is to induce photon-den
waves in a turbid medium using an intensity-modulated li
source. The phase velocity and the attenuation of these
ton density waves depend on optical properties of the
dium and on the modulation frequency@8–11#. The localized
areas having optical properties differing from those of

*FAX: ~217! 244-7187.
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background medium affect the photon-density waves by
sorption and refraction processes. Similarly to the DW
method, we relate the fluctuations in the photon-dens
wave parameters to the optical fluctuations in turbid med
The differences from DWS are that~i! in our case the mea
surable parameters are the average intensity~dc!, the modu-
lation amplitude~ac!, and the phase (F) of the photon den-
sity wave ~having a frequency of;100 MHz!, while in
DWS the only measurable value is the light intensity, and~ii !
in our case the process under study is the large-scale;
mm! local optical property change, while in DWS it is th
microscopic particle displacement (; nm!.

The purpose of our investigation is to show the poten
of this approach forin v ivo studies of biological systems
and to determine the instrumental capabilities. The exp
mental part of our work is based on frequency-domain m
surements of the diffuse photon-density wave propagatin
a Liposyn suspension with fluctuating optical properties. T
spatial and temporal fluctuations of the scattering and
sorption coefficients are caused by the motion of absorb
particles having a size of 1.0–1.6 mm. The frequen
domain parameters analyzed in this study are the dc
phase of the photon-density wave. Similarly to the stand
DWS approach, we use the diffusion approximation of lig
transport in a turbid medium@8–11# to express the statistica
characteristics of frequency domain parameters~average val-
ues and autocorrelation functions! in terms of those of the
particle motion.

The paper is organized as follows. In Sec. II we descr
our experimental apparatus and methods. In Sec. III we
rive the expressions for the mean values and autocorrela
functions of the frequency-domain parameters based o
simplified statistical model for the motion of the absorbi
particles. In Sec. IV we compare the experimental meas
ments with the theoretical predictions. The discussion of
results is presented in Sec. V.

II. EXPERIMENTAL SETUP AND METHOD

The central part of our experimental setup~Fig. 1! con-
sists of a container~a 1-L beaker! filled with an aqueous
2288 © 1998 The American Physical Society
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FIG. 1. Schematic of the experimental setup, PMT is the photomultiplier tube. The Synthesizer 3 is used as a clock for the
synchronization.
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Liposyn suspension~Abbott Laboratories!, in which small
black rubber particles undergo turbulent motion caused b
magnetic-stick stirrer. The average velocity of particle m
tion is controlled by adjustment of the stirrer rotation fr
quency. In each experiment we use particles of appro
mately equal size, either 1 mm or 1.6 mm effective diame

The 750 nm light emitted by the laser diode (;2 mW
average power, Sharp LT030MD! is guided to the medium
through a multimode silica optical fiber~source fiber! having
a core diameter of 600mm and a numerical aperture of 0.3
~Thorlabs, FT-600-EMT!. A glass fiber bundle~detector fi-
ber, internal diameter: 3.2 mm, numerical aperture: 0.
Oriel, Model No. 77527! collects the scattered light and co
ducts it to the photomultiplier tube~PMT, Hamamatsu

FIG. 2. Time traces of the dc and phase signals before and
the stirrer is turned on. The average particle radius is 0.79 mm
particle concentration is 0.3 cm23; the magnet rotation frequency i
about 2.5 Hz; the acquisition time is 8 ms per data point.
a
-

i-
r.

,

R928!. To prevent significant light blockage by particle
coming very close to the fiber ends, both fibers are place
glass tubes such that the ends are approximately in the ce
of the hemisphere at the bottom of the tubes, which hav
diameter of 1.3 cm. The tubes are filled with the same m
dium as the entire container. The distance between the so
and detector fibers ranges from 1.4 to 2.4 cm, which co
sponds to a minimum distance between the tube walls ra
ing from 0.1 to 1.1 cm.

The laser current and the PMT voltage are modulated
the synchronized synthesizers at 110 and 110.005 MHz
spectively. The signal from the PMT at the difference fr
quency ~also called the cross-correlation frequency! is ap-
plied to the input of an interface card~ISS A2D, ISS Inc.,
Champaign, IL! for an IBM-PC computer, where the dat
processing is performed to obtain dc, ac, andF @12#. Figure
2 shows a sample of the dc and phase temporal evolu
obtained with an acquisition time of 8 ms. The left part of t

ter
e

FIG. 3. Phase and dc normalized autocorrelation functions
tained from the experimental power spectra using the discrete
verse Fourier transform. Experimental conditions are the same a
Fig. 2, and the total time per sweep is 8 sec.
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TABLE I. Results of the leastx2 fit of the average phase and dc change in three different experim
Numbers in parentheses are the standard deviation errors in the last digits.

Data
set Average change in Parameter Expected Fitted x2 Fig. No.

a ~mm! 0.79~1! 0.68~2!

dc n1 (cm23) 0.3 0.29~4!

for different concentrations n2 (cm23) 0.4 0.42~5! 1.1
of large particles n3 (cm23) 0.5 0.49~5!

n4 (cm23) 0.6 0.61~5!
1

a ~mm! 0.79~1! 0.66~1!

phase n1 (cm23) 0.3 0.32~5!

for different concentrations n2 (cm23) 0.4 0.40~5! 1.4 5~a!

of large particles n3 (cm23) 0.5 0.47~5!

n4 (cm23) 0.6 0.54~5!

a ~mm! 0.50~1! 0.38~1!

n1 (cm23) 0.4 0.3~1!

dc n2 (cm23) 0.8 0.8~1!

for different concentrations n3 (cm23) 1.2 1.3~1! 1.8 5~b!

of small particles n4 (cm23) 1.6 1.7~1!

n5 (cm23) 2.0 2.0~1!

n6 (cm23) 2.4 2.4~1!
2

a ~mm! 0.50~1! 0.35~1!

n1 (cm23) 0.4 0.2~2!

phase n2 (cm23) 0.8 0.8~1!

for different concentrations n3 (cm23) 1.2 1.2~1! 1.5
of small particles n4 (cm23) 1.6 1.7~1!

n5 (cm23) 2.0 2.0~1!

n6 (cm23) 2.4 2.4~1!

a ~mm! 0.50~1! 0.50~1!

phase ma1 (cm21) 0.044~2! 0.041~2!

3 for differentma values ma2 (cm21) 0.057~2! 0.050~2! 1.7 5~c!

~small particles! ma3 (cm21) 0.073~2! 0.059~1!

ma4 (cm21) 0.088~2! 0.077~3!
s
th
-
ix
ve
th
e
t

we
st
lin

ng

cy
lu
io
b
d

ch
A
e

to

nly
re-
so-

s
any
plot corresponds to the situation when the mixer is off,
that the particles rest on the bottom of the beaker, and
right part ~after t'2.5 s! corresponds to the fluctuation re
gime, when the stirrer is on. One can see that when the m
is on, both the phase and the dc exhibit fluctuations o
some average value, which is different from that when
mixer is off. The time series of the dc and phase values w
further processed to obtain the time-averaged values of
frequency domain parameters and their fluctuation po
spectra. For the power spectrum analysis two characteri
of the data acquisition are important, namely the samp
rate ~which is inverse of the acquisition time! and the total
length of the time sweep. The upper limit of the sampli
rate is determined by the cross-correlation frequency~5 kHz
for our instrument! and is the higher the larger the frequen
is. This is because the frequency-domain parameter eva
tion employs the fast Fourier transform of a cross-correlat
waveform, in general obtained by averaging over a num
of acquired waveforms@12#. For the measurements reporte
in this work, the acquisition time per point was 8 ms, whi
corresponds to 40 periods of the cross-correlation wave.
results were verified to be in good quantitative agreem
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with those obtained at different acquisition times from 4
16 ms per point. An acquisition time of 4~16! ms corre-
sponds to a frequency bandwidth of 125~31.25! Hz in the
power spectrum. The total time of a sweep is restricted o
by the capacity of the computer memory. In our measu
ments it was 8.2 s, which corresponds to a frequency re

FIG. 4. View of the beaker setup from above. Coordinate axex
andz show only the spatial directions and are not attached to
fixed Cartesian coordinate system. The verticaly axis is perpen-
dicular to the plane of the figure.
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lution of 0.125 Hz. Figure 3 shows typical dc and pha
normalized autocorrelation functions~autocorrelation func-
tions normalized to unity at zero time! obtained from the
experimentally acquired power spectra by means of the
verse discrete Fourier transform.

Our technique also allows us to obtain the absorption
reduced scattering coefficients of the medium from the p
of the dc and phase vs source-detector distance in the
sence of particles. The details on the corresponding te
nique may be found in@13,14#. In all the measurements re
ported here the reduced scattering coefficientms8 of the
Lyposin suspension was 9.860.1 cm21. The absorption co-
efficient ma was always 0.04260.001 cm21, apart from the
experiment where we variedma ~data set 3 in Table I!.

III. THEORY

A. The model

Figure 4 shows a close up view of the beaker setup
explains the geometry-related notations used below.

We describe the signal fluctuations due to the part
motion using the diffusion approximation to the theory
light propagation in turbid media@8–11#. In this approxima-
tion the light energy density as a function of time and sp
coordinates~the so-called ‘‘photon density’’! obeys the gen-
eral diffusion equation and the particular boundary con
tions specified by the light absorption and scattering at
boundaries. We assume that the rubber particles contribu
the signal change by absorbing photons from all poss
paths passing through a given particle. Since the parti
used in the experiment are small, one can neglect the co
butions from those photon paths that include more than
particle. In this approximation the solution to the diffusio
equation may be written as

G5U1(
j 51

Np

duj , ~1!

whereU5Udc1Uac is the sum of dc and ac photon densiti
created by the light source in the absence of particles,duj
5dudc(r jI)1duac(r j ,v) is the sum of dc and ac contribu
tions from the particle having coordinater j , andNp is the
total number of particles in the beaker. The simplest anal
cal form of duj is that for a spherical particle at positionr ,
for which it may be expressed as the sum of the dc and
terms both having the form

du~r ,v!5S~v!
3ms8

v (
l 50

`

Av łhl
~1!~kvj!hl

~1!

3~kvh!Yl ,0~u,0!e2 ivt, ~2!

where j and h are the distances from the particle to t
source and the detector, respectively~see Fig. 4!. Note that
as a result of the cylindrical symmetry with respect to thez
axis passing through the source and detector~Fig. 4!, j and
h are the only independent coordinates entering Eq.~2!,
since the angleu may be expressed in their terms. In Eq.~2!,
hl

(1)(x) are the spherical Hankel functions of the first kin
Yl ,m(u,f) are spherical harmonics,Av l
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constants defined by the boundary conditions@15#, v is the
speed of light in the medium, andS(v) is the source power
at angular frequencyv ~for the dc,v50). In Eq. ~2!, kv is
the diffusion wave number,

kv5A3

2
mams8F S 211A11

v2

c2ma
2D 1/2

1 i S 11A11
v2

c2ma
2D 1/2G , ~3!

wherema and ms8 are, respectively, the absorption and t
reduced scattering coefficients of the medium.

The constantsAv ł in Eq. ~2! depend on the size of th
object and on its scattering and absorbing properties@15#.
Using the expressions forAv ł derived in@15# one can check
that for perfectly absorbing objects having a diame
smaller than about 5 mm, the magnitudes ofAv ł monotoni-
cally decrease by several orders of magnitude for each
cessivel . Keeping only the zero-order term we have

du~r ,v!5S~v!Av

3ms8

v
eikv~j1h!

4pjh
, ~4!

where

Av5 i
e2 ikva

kv

2kva cos~kva!2~213ms8a!sin~kva!

2kva1 i ~213ms8a!
.

~5!

In Eq. ~5!, a is the radius of the spherical object. Note that
one takes typical values for near-infraredma andms8 in bio-
logical tissues~e.g., ma50.1 cm21, ms858 cm21), where
kv'1cm21, and sincea!1 cm, we can set cos(kva)51
and sin(kva)5kva, so we obtain the approximation

Av'2
3ms8a

2

213ams8
. ~6!

This is unlike the case of a nonperfect absorber, for wh
the zero-order term in Eq.~2! is proportional toa3. Note that
the modulation frequencyv does not enter Eq.~6!, so that in
this approximation the coefficientsAv for the dc and ac parts
of the signal are equal.

B. Average values of dc and phase fluctuations

If one considers a homogeneous spatial distribution
absorbing particles, and by assuming that all particles
spheres of the same radiusa, the ensemble average of the d
fluctuation ^dUdc&5^( jdu(r j ),0& is given by the volume
integral of the right-hand side of Eq.~4! at v50, multiplied
by the particle concentrationn. Taking into account that in
terms of the variablesj and h the volume element is
(2pjh/R)djdh ~whereR is the source-detector separation!,
and that the source and the detector are protected from
particles by tubes of radiusD, one obtains for the average d
change the expression
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^dUdc&5S~0!
3ms8

v
A0n

2R

a~R22D!112e22aD

a2
e2aR,

~7!

wherea5A3mams8, or using the approximations in Eq.~6!,

^dUdc&'2S~0!
~3ms8!2a2

213ams8

ne2aR

2vR

a~R22D!112e22aD

a2
.

~8!

For comparison with the experimental measurements i
more convenient to use the relative average dc fluctua
^dUdc&Udc. Assuming an infinite medium, for whichUdc

5S(0)(3ms8e
2aR/4pvR), one gets

^dUdc&
Udc

5
26pnms8a

2

213ams8

a~R22D!112e22aD

a2
. ~9!

Note that the right-hand side of Eq.~9! is a linear function of
R.

To estimate the average phase fluctuation we write the
part of the signal in the form

S~v!
eikvR2 ivt

4pvR S 12AvR(
j

eikv~j j 1h j 2R!

j jh j
D , ~10!

where the factored term is the ac signal with no particles
follows from Eq. ~10! that the tangent of the phase chan
dF due to the particles is

tan~dF!5

R ImS Av(
j

eik~j j 1h j 2R!

j jh j
D

12R ReS Av(
j

eik~j j 1h j 2R!

j jh j
D . ~11!

Note that for particles less than a few millimeters in diame
the absolute value ofAv is much smaller thenR. Let us also
take into account the fact that the values ofj j andh j in Eq.
~10! are of the order ofR/2 and greater than 0.65 cm~the test
tube radius!. For this reason the second term in the deno
nator of Eq.~11! may be neglected. This is valid for particle
of small enough size if their concentration is not too larg
Since in our measurements the instantaneous phase dev
values from the value in the absence of particles lie withi
few degrees~see Fig. 2!, one can also replace tan(dF) by
dF, so that finally the phase fluctuation may be expresse
the sum over the single-particle contributionsdf(r j ) as

dF'( jdf~r j !, ~12!

where

df~r j !5R ImS Av

eikv~j j 1h j 2R!

j jh j
D . ~13!

This approximation leads to the expression for the aver
phase fluctuation:
is
n

ac

It

r

i-

.
tion
a

as

e

^dF&'Rn ImS AvE eikv~j1h2R!

4pjh
dVD

52pn ImS Av

kv
2 @211e2ikD1 ik~R22D!# D ,

~14!

from which one can see that^dF& is a linear function of the
source-detector distanceR. Using the approximation~6! for
Av , Eq. ~14! becomes

^dF&'2
6pnms8a

2

213ams8
ImS 211e2ikD1 ik~R22D!

k2 D .

~15!

C. Autocorrelation functions

If one assumes a homogeneous particle distribution in
medium and the independence of the motion of each par
from the others, the dc autocorrelation functionKdc(t) may
be given by the expression@16#

Kdc~t!5nE E du~r1 ,0!du~r2 ,0!Wt~r1→r2!d3r1d3r2 ,

~16!

where du(r ,0) is the single-particle contribution to the d
change given by Eq.~4!, r1 and r2 are the coordinates of a
particle at time momentst and t1t, respectively,Wt(r1
→r2) is the probability density for the particle displaceme
from point r1 at time t to point r2 at time t1t, andn is the
concentration of particles. The particular form ofWt(r1
→r2) is determined by the nature of the particle motion a
is not known for the given environment. We assume that
vector of a particle displacementr22r1 may be represented
as a sum of the regular periodical componentr 8(t) describ-
ing the rotation in the horizontal plane around the bea
vertical axis, and a random componentr 9. For this model the
probability density may be written as@17#

Wt~r1→r2!5
~4pt!23/2

ADxDyDz

expS 2
~x9!2

4Dxt
2

~y9!2

4Dyt
2

~z9!2

4Dzt
D ,

~17!

and the integration overr2 in Eq. ~16! reduces to that ove
r 9. Since the detector sensitivity to the presence of a part
is restricted to distances of abouta21'1 cm, we assume
for simplicity thatr 8(t) evolves along thex axis from2` to
1` at each rotation period~see Fig. 3!. Using these assump
tions and the approximation of the functiondu(r ,0) by the
series of Laguerre functions~see the Appendix! one can get
the following expression for the dc normalized autocorre
tion function @16#:

Rdc~t!5
Kdc~t!

Kdc~0!
5

e2[d~t!] 2s/4~11stDx!erfS R22D

ADzt
D

A~11stDx!~11stDy!
,

~18!
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whered(t) is the x component of the vectorr 8(t), which
describes the regular periodic motion ands21/2 is the char-
acteristic decay length of the functiondu(r ,0) along thex
and y directions in the first order of the Laguerre functio

approximation@see Eq.~A2!#, and erf(s)5(2/Ap)*0
se2t2dt

is the error function.
Since Eq.~12! gives the instantaneous phase fluctuation

terms of the sum over single-particle contributions@Eq. ~13!#
as is done for the dc, the correlation function for the ph
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may be estimated using the general expression of the s
form as Eq.~16! for the dc:

Kphase~t!5nE E df~r1!df~r2!Wt~r1→r2!d3r1d3r2 ,

~19!

where Wt was defined above. In the Appendix, using t
first-order approximation of functionf(r ) by the series of
associated Laguerre functions, we show that the normal
autocorrelation function for the phase has the form
Rphase~t!5e2[d~t!] 2b/4~11btDx!erfS R22D

ADzt
D @321bt~128Dx164Dy!1b2t2@d4112d2Dx1204Dx

214d2Dy1264DxDy

144Dy
2#1b3t3@12d2Dx

21152Dx
312d4Dy132d2DxDy1432Dx

2Dy14d2Dy
21184DxDy

2#1b4t4@44Dx
4

128d2Dx
2Dy1328Dx

3Dy1d4Dy
2120d2DxDy

21300Dx
2Dy

2#1b5t5@96Dx
4Dy116d2Dx

2Dy
21224Dx

3Dy
2#

164b6t6Dx
4Dy

2#/@32~11btDx!
9/2~11btDy!5/2#, ~20!
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whereb21/2 is the decay length for the functiondf(r ) along
the x andy directions@see Eq.~A5!#.

To discuss Eqs.~18! and ~20! let us first note that both
formulas have the exponential factors identical apart fr
the replacement ofb by s in Eq. ~20!. These factors give the
damped-pulse form~see Fig. 3! to the curves of autocorrela
tion functions, while the terms in the denominators prov
the correlation decay for larget. If one setsd50 in Eqs.
~18! and ~20!, the corresponding curves decay monoto
cally. The origin of the peaks in the autocorrelation functi
is the periodic component of the particle motion, while t
decay is due to the random diffusion of particles. Note that
enters the denominator of the exponent argument as a
tiple of Dx , so that this diffusion constant is responsible f
the broadening of successive correlation peaks. At smat
@!(bDx,y)

21,(sDx,y)
21# the evolution of both the dc an

phase curves is mostly affected by the exponential ter
Particularly, if one assumes a linear dependence ofd on t,
these terms provide a Gaussian decay with the characte
decay constants proportional tos andb for the dc and phase
autocorrelation functions, respectively. Typical values ofs
that provide the best approximation of*0

`du2(c,0)dc ~see
the Appendix! with only the zero order term in Eq.~A2! are
about 3.6 cm22, while the optimum values ofb are some-
what less~about 3.3 cm22). In other words, when a particl
recedes from the probe, the probe feels the particle in
phase longer than in the dc. This is why, according to E
~18! and ~20!, the autocorrelation function for the phas
decays slower than that for the dc. For lar
t@@(bDx,y)

21,(sDx,y)
21# one can neglect the unity in th

denominators of the right-hand sides of both Eqs.~18! and
~20!. Also, all terms of order less than six in the numera
polynomial in Eq. ~20! can be neglected. Consequent
at large t both curves decay ast21. The factor
erf@R22D/ADzt# in Eqs.~18! and~20! describes the corre
lation decay due to the diffusion along thez axis. This decay
e

-

ul-
r

s.

tic

e
s.

r

is slower than those introduced by the exponential and
nominator terms because of the probe weak sensitivity
particle displacement in thez direction. One should note tha
Eqs.~18! and~20! essentially represent the normalized au
correlation functions of the dc and phase responses fo
single-particle random perturbation. Their proportionality
the dc and phase correlation functions, where the coefficie
linearly depend on the particle concentration, is the con
quence of the assumption of the statistical independenc
the motion of each particle from the others. For the ph
correlation function the linear dependence onn is also a
result of the approximation made to obtain Eq.~12! from Eq.
~11!.

IV. EXPERIMENTAL RESULTS

A. Fit of average values

Equations~9! and ~15! derived in Sec. III may be com
pared with the frequency domain parameter time-avera
data obtained using the instrumentation described in Sec
For a discrete set ofM source-detector distancesRi we ob-
tained three data sets for the time-averaged dc and p
values yi , j . These data sets correspond to measurem
made at various~i! concentrationsnj of large particles with
an effective radiusa50.79 mm; ~ii ! concentrationsnj of
small particles with an effective radiusa50.50 mm; ~iii !
absorption coefficientsma j for the constant concentrationn
50.6 cm23 of small particles. The effective radius of th
particles was estimated from the measurement of the volu
occupied by a known large number~1800! of particles. The
smaller particles were produced from the larger ones by
ting each into four pieces, so that the average radius r
equals 41/3. To vary the absorption coefficient of the mediu
we employed various concentrations of black India ink. T
data were fitted by curvesYa,qj

(R) given by Eq.~9! for the

dc or Eq.~15! for the phase. The parametera was imposed to
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have the same value for a given data set and correspon
the particle effective radius.N valuesq1 , . . . ,qN of the pa-
rameterq ~whereN is the number of curves in each data s!
vary for different curves within each data set and corresp
to nj for the first and second data sets and toma j for the third
one. The fitting algorithm is based on the minimization of t
x2 function @18#,

x2~a,q1 , . . . ,qN!5~NM2N21!21

3(
j 51

N

(
i 51

M @yi , j2Ya,qj
~Ri !#

2

n i , j
2

~21!

~wheren i , j are the standard deviation errors in the measu
ments yi , j ) with respect to the values of the paramete
a,q1 , . . . ,qN . The parameters providing the best fit are
ported in Table I, while Figs. 5~a!–5~c! illustrate the good-

FIG. 5. ~a! Average values of the phase change for differe
concentrations of large particles~0.79 mm effective radius!; ~b!
average relative dc change for different concentrations of small
ticles ~0.50 mm effective radius!; ~c! average phase change for di
ferent absorption coefficients of the turbid medium. The points r
resent the experimental data as a function of source-dete
distance, while the lines are the best theoretical fits.
to

d

-
s
-

ness of the fit. From Figs. 5~a!–5~c! and Table I one can se
that Eqs.~9! and~15! fit the data with parameters that are
good agreement with the expected ones. A small nega
curvature exhibited by the sets of data points may be rela
to the nonhomogeneity of the particle spatial distributio
which is larger near the beaker wall and smaller near
center. Since in our measurements the fiber nearest to
wall was fixed and the source-detector distance was chan
by moving the other fiber towards the beaker center,
effective concentration of the particles was decreasing w
distance. Note that while the fitted radii in the first two da
sets are consistently smaller than the expected ones, the
of the large to small fitted radii is 1.7, close to the expec
value of 41/3'1.6.

B. Fit of power spectra

Figure 6 shows the experimental power spectra of
phase fluctuations obtained for three different mixing mag
rotation rates. One can see that each curve has a maxim
peak at a frequency that increases with the magnet rota
rate. There are also peaks at the harmonics of these freq
cies. This confirms that the particle motion may be cons
ered as the superposition of the periodic and random com
nents assumed for the derivation of Eqs.~18! and ~20!. The
fact that the maximum peak frequency for each curve in F
6 is more than two times smaller than the correspond
frequency of the magnet rotation is explained by the spi
like character of particle motion, such that particles return
the probe after traveling along a number of vertica
stretched loops.

Another assumption used to obtain the dc and phase
tocorrelation functions is the statistical independence of
particle motion. To check its validity, power spectra we
obtained for different concentrations of particles. From F
7~a! one can see that most of the spectrum increases ho
geneously with concentration and approximately doub
when the concentration doubles, in agreement with the
sumption made. To check this point quantitatively we p
the integral of the dc power spectrum as a function of p
ticle concentration@Fig. 7~b!#. Figure 7~b! shows that the
integrated dc power spectrum increases somewhat faster
linearly, and the divergence from a straight line becom
more significant at large concentrations~note that the inset,

t

r-

-
tor

FIG. 6. Phase power spectra acquired at three successivel
creasing magnet rotation frequencies. The arrows indicate the
quencies corresponding to the peaks. The experimental condi
are the same as in Fig. 2, apart from the effective particle rad
~0.50 mm!.
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corresponding to very small particle concentrations, sho
an almost perfect linearity!. The curve deviation from the
linearity may be related to the power spectrum peak at
average particle rotation frequency, which increases fa
than the rest of the spectrum and becomes more pronou
at large concentrations@Fig. 7~a!#. One can attribute this fas
growth of the resonant peak to the correlations among
ticles, which are not included in the theoretical model.

The real picture of particle motion may be more comp
cated than the one assumed in our theoretical model, an
detailed investigation is beyond the goals of the present
per. However, some of the correlation function characte
tics predicted by the model are observed experimentally. F
ure 3 shows the normalized autocorrelation functions for
dc and phase obtained from the power spectra by mean
the inverse discrete Fourier transform. The behavior of th
curves is in qualitative agreement with the theoretical resu
~i! both curves exhibit damped pulsations with a period co
parable to that of the mixer rotation rate, and~ii ! the dc
autocorrelation decays faster than that of the phase. To ve
experimentally Eqs.~18! and~20!, we fitted the experimenta
power spectra to the theoretical curves by adjusting the
ues of the diffusion constantsDx ,Dy ,Dz . Figure 8 shows
fits for the dc and phase spectra, where the theoretical cu
are obtained from the discrete Fourier transform of the au
correlation functions given by Eqs.~18! and~20!. The func-
tion d(t) in Eqs.~18! and ~20!, representing the regular pe
riodic component of particle motion, is simulated by t
function L tan(ptV), where L54 cm is the radius of a
horizontal circle centered at the beaker vertical axis a

FIG. 7. ~a! dc power spectra for different particle concentr
tions. From bottom to top, the curves correspond to particle c
centrations of 0.008, 0.016, 0.032, 0.064, 0.128, and 0.256 cm23.
~b! Integrated dc power spectrum vs particle concentration.
inset shows an enlarged view of the boxed part of the curve in
main plot.
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passing through the middle of the line joining the source a
detector fibers~Fig. 4!, and V is the rotation rate. Such a
choice ofd(t) provides a kind of motion in which the par
ticle periodically recedes to infinity and returns back to t
probe. To obtain the theoretical curves shown by the c
tinuous lines in Fig. 8, all the parameters entering Eqs.~18!
and~20! ~apart from the diffusion constants! are set equal to
their experimental values. The diffusion constant values p
viding the best fit areDx5Dy5Dz56 cm2/s. One can see
that the theoretical curves are in good quantitative agreem
with the experimental data.

V. DISCUSSION AND CONCLUSION

Data acquired with a sampling rate of 125 Hz show th
our instrument is appropriate to investigate optical fluctu
tions in the frequency band of 0–62.5 Hz~processes on a
time scale of 16 msec or slower!, and over a spatial size a
small as 1 mm. Reference@7# has presented measurements
temporal changes in the human occipital cortex optical
rameters during visual stimulation. Since the characteri
time of the observed process is about 100 ms, the aut
assign their observation to the neuronal activity. As repor
by Grattonet al. @7#, optical signals corresponding to specifi

-

e
e

FIG. 8. The dc~a! and phase~b! power spectra. The points
represent the experimental data, while the lines are the bes
provided by Eq.~18! @panel~a!# and Eq.~20! @panel~b!#. The data
are obtained in the following experimental conditions: particle
fective radius and concentration are, respectively, 0.5 mm and
cm23, magnet rotation frequency is 4 Hz. In the theoretical curv
the effective particle rotation frequency is 1.5 Hz. Although t
frequency band investigated extends up to 62.5 Hz, the freque
axis is limited to 20 Hz because the particle motion does not c
tribute to the power spectrum at larger frequencies.
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brain functions are very weak, having amplitude compara
to that of the underlying noise due to biological activity a
the instrument noise. The instrument noise is statistically
dependent of the specific process under study and subtra
its spectrum from the power spectrum of the process
filter it out. Following this approach, we performed a me
surement to obtain the dc and phase fluctuation power s
tra using only one cross-correlation period per data po
The minimum period corresponded to a time resolution
0.2 ms and a maximum sampling frequency of 5 kHz. In o
test we collected data for the same total amount of time,
using different sampling rates. These power spectra
those obtained at a sampling interval of 8 ms essenti
coincide in the frequency band 0–62.5 Hz. This test dem
strates that the maximum effective sampling rate of our
strument extends up to 5 kHz.

Theoretical calculations confirmed by measurements
veal that both phase and dc power spectra are proportion
the concentration of particles and to the fourth power of th
effective radius. For particles having an effective diamete
1 mm at a concentration of 0.3 cm23 we measured a signa
to-noise ratio~SNR! of 22 dB for the phase power spectru
at the maximum peak frequency. Using the above theore
result to scale this value, we found that the phase SNR
comes 0 dB for particles with an effective diameter of 0
mm at a concentration of 0.3 cm23. Alternatively, it de-
creases to 0 dB for particles with an effective diameter o
mm and at a concentration of 0.03 cm23. The dc SNR’s are
typically much higher. For the same conditions at which
phase power spectrum SNR is 22 dB, the dc maximum p
SNR is 41 dB. These results give an indication of what is
smallest measurable size of particles at a given concentra
~and in our experimental conditions!.

Our measurements show that the phase and the d
photon-density waves propagating through a turbid med
with fluctuating optical properties have quantitatively diffe
ent statistical properties. Namely, the phase correlation fu
tion decays slower than that of the dc. This effect reflects
well-established property of the dc and phase signals to
plore different spatial regions. The dc signal is very sensit
to the region close to the source and detector fibers. Ins
the phase signal responds more uniformly to the region
tween the source and the detector.

The statistical model we have used to describe the par
motion corresponds to the so-called model of homogene
stationary turbulence@17#. We realize that this model is ver
rough and does not include many features of the real par
motion. However, the goal of the present work is not t
investigation of the properties of the particle motion in t
flow, but the demonstration of the method to study fluctu
tions of the optical parameters in turbid media. The value
the particle diffusion constants~about 6 cm2/s) obtained
from the experimental power spectra are consistent with
observed average speed of particles~about 5–10 cm/s!,
which confirms the validity of the method.

We note that although the system we have studied is
from being a perfect model of any real tissue, some of
features are similar to those observed in tissues@7#. For in-
stance, the occurrence of areas having optical properties
fering from those of the background medium, the tempo
fluctuations in the local optical properties, and the prese
le
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of a periodic component in the process~provided in tissues
by the heart beat!.

In conclusion, using the diffusion approximation for ligh
transport in turbid media we have obtained analytical expr
sions for the mean changes in the dc and phase due to
motion of absorbing particles. Our measurements show
these expressions are in good agreement with the experim
tal data. In our case, the measurement of macroscopic
tuation of optical parameters in turbid media provides inf
mation about the underlying physical processes and t
time characteristics.

The results and methods presented in this work may
used to develop a high temporal resolution technique for
study of functional processes related to blood flow and o
genation, and to neuronal activity.
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APPENDIX

To perform the integration in Eq.~16! we replace the
function du(r ,0) by a suitable approximation. Due to th
axial symmetry, this function depends only on two spat
coordinates, which may be chosen as the distancer from the
particle to the source-detector line~see Fig. 4! and the lon-
gitudinal coordinatez along this line. Using Eq.~4! one can
check that the change indu(r ,0)5du(r,z,0) with z is only
significant in the vicinity of the source or the detector. Sin
the source and detector are confined by the tubes, wez
5R/2, so that Eq.~4! becomes

du~r,R/2,0!'
Av

4p

exp@22aA~R/2!21r2#

~R/2!21r2
. ~A1!

The next step is to approximate Eq.~A1! by the weighted
series ofN Laguerre polynomialsLn(sc) @19#:

Av

4pS (
n51

N

hnLn~sc!D exp~2sc/2!, ~A2!

wherec5r2 and

hn5sE
0

`exp@22aA~R/2!21c2sc/2#

~R/2!21c
Ln~sc!dc.

~A3!

The substitution of Eq.~A1! with the series~A2! is advanta-
geous to estimate the correlation function for the followi
reasons. First, one can vary the parameters, which specifies
the ‘‘width’’ of the Laguerre functions, such that the firs
term in Eq.~A2! agrees with Eq.~A1! to within 10%. Sec-
ond, in the limit of larget the double integral in Eq.~16!
turns into the square of an integral of the for
*0

`du(c,0)dc. The approximation of a function by the serie
of weighted orthogonal polynomials provides the minimiz
tion of the error in the estimation of the integral of the fun
tion with respect to all possible polynomial approximatio
of the same order. Therefore, the series~A2! gives a good
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approximation for the correlation function at larget. In ad-
dition, the value of the parameters may be chosen to mini
mize not the error in the function approximation itself, b
the error in the estimation of*0

`du2(c,0)dc, which is the
principal term entering the expression for the dc autoco
lation function att50. In this way the parameters naturally
becomes dependent on the physical characteristics of the
tem, such as the source-detector distanceR and the absorp-
tion and reduced scattering coefficientsma andms8 .

Keeping a large enough number of terms in Eq.~A2! one
may calculate the correlation function to any desired ac
racy. However, since we have no detailed information ab
the statistics of the particle motion, we can analyze the s
ation only qualitatively. For this reason we keep only the fi
term in the series~A2! to derive the expression for the d
autocorrelation function given by Eq.~18!.

Like the functiondu(r ,0), the single-particle contribution
to the phase fluctuationdf(r ) given by Eq.~13! depends
slowly on the longitudinal coordinatez and may be approxi-
mated as
ys

r,

J

S

.

C.

m

e

t

-

ys-

-
t
-

t

df~r!'R
Im„Avexp$2ik@A~R/2!21c2R/2#%…

~R/2!21c
.

~A4!

The next step for calculating the integral in Eq.~19! is the
substitution of the right-hand side of Eq.~A4! by a weighted
series of orthogonal polynomials. The only difference fro
the dc case is that a quicker convergence to the approxim
function may be obtained using the set of associated
guerre polynomials of the first orderL1

n(bc), whereb is
the characteristic width of the function in the right-hand si
of Eq. ~A4!. This function is approximated by the series

RS ( ngnL1
n~bc! D ~bc!exp~2bc/2!, ~A5!

where the coefficients are
s

gn5bG~n11!/@G~11n11!#3 E
0

` Im„Avexp$2ik@A~R/2!21c2R/2#%…

~R/2!21c
exp~2bc/2!L1

n~bc!dc, ~A6!

andb is chosen to minimize the error in the calculation of the integral ofdf2(x). Keeping only the first term in the serie
~A5!, one obtains the autocorrelation function for the phase given in Eq.~20!.
In-

B.

n,

c.

e

@1# G. Maret and P. E. Wolf, Z. Phys. B65, 407 ~1987!.
@2# M. Rosenbluh, M. Hoshen, I. Freund, and M. Kaven, Ph

Rev. Lett.58, 2754~1987!.
@3# D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheime

Phys. Rev. Lett.60, 1134~1988!.
@4# D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer,

Phys.~France! 51, 2101~1990!.
@5# G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini,

Fantini, P. Corballis, and E. Gratton, J. Cogn. Neurosci.7, 446
~1995!.

@6# R. Wenzel, H. Orbig, J. Ruben, K. Villringer, A. Thiel, J
Bernardin, U. Dirnagl, and A. Villringer, J. Biomed. Opt.1,
399 ~1996!.

@7# G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D.
Hood, Psychophysiology32, 505 ~1995!.

@8# A. Ishimaru, Wave Propagation and Scattering in Rando
Media ~Academic, New York, 1978!.

@9# A. Ishimaru, Appl. Opt.28, 2210~1989!.
@10# B. J. Tromberg, L. O. Svaasand, T.-T. Tsay, and R. C. Hask

Appl. Opt. 32, 607 ~1993!.
.

.

.

ll,

@11# S. R. Arridge, M. Cope, and D. T. Delpy, Phys. Med. Biol.37,
1531 ~1992!.

@12# B. A. Feddersen, D. W. Piston, and E. Gratton, Rev. Sci.
strum.60, 2929~1989!.

@13# S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker,
Barbieri, and E. Gratton, Opt. Eng.~Bellingham! 34, 32
~1995!.

@14# S. Fantini, M. A. Franceschini, J. B. Fishkin, and E. Gratto
Proc. SPIE2131, 356 ~1994!.

@15# D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, Pro
Natl. Acad. Sci. USA91, 4887~1994!.

@16# R. L. Stratonovich,Topics in the Theory of Random Nois
~Gordon and Breach, New York, 1967!.

@17# M. W. Reeks, Phys. Fluids A3, 446 ~1991!.
@18# P. R. Bevington and D. K. Robinson,Data Reduction and

Error Analysis for the Physical Sciences, 2nd Ed.~McGraw-
Hill, New York, 1992!, p. 195.

@19# G. Arfken, Mathematical Methods for Physicists~Academic
Press, San Diego, 1985!, p. 724.


